
Transportation Research Part C 70 (2016) 142–156
Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier .com/locate / t rc
Ordered median hub location problems with capacity
constraints
http://dx.doi.org/10.1016/j.trc.2015.05.012
0968-090X/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
J. Puerto a,⇑, A.B. Ramos a, A.M. Rodríguez-Chía b, M.C. Sánchez-Gil b

a Facultad de Matemáticas, Universidad de Sevilla, Spain
b Facultad de Ciencias, Universidad de Cádiz, Spain
a r t i c l e i n f o

Article history:
Received 12 May 2014
Received in revised form 24 March 2015
Accepted 13 May 2015
Available online 15 June 2015

Keywords:
Hub location
Discrete ordered median problems
Capacities
a b s t r a c t

The Single Allocation Ordered Median Hub Location problem is a recent hub model intro-
duced in Puerto et al. (2011) that provides a unifying analysis of a wide class of hub loca-
tion models. In this paper, we deal with the capacitated version of this problem, presenting
two formulations as well as some preprocessing phases for fixing variables. In addition, a
strengthening of one of these formulations is also studied through the use of some families
of valid inequalities. A battery of test problems with data taken from the AP library are
solved where it is shown that the running times have been significantly reduced with
the improvements presented in the paper.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Network design problems are among the most interesting models in combinatorial optimization. In the last years
researchers have devoted a lot of attention to a particular member within this family, namely the hub location problem, that
combines network design and location aspects of supply chain models, see the surveys (Alumur and Kara, 2008; Campbell
et al., 2002; Campbell and O’Kelly, 2012). The main advantage of using hubs in distribution problems is that they allow to
consolidate shipments in order to reduce transportation costs by applying economies of scale, which are naturally incorpo-
rated to the models through discount factors. Hub location problems have been studied from different perspectives giving
rise to a number of papers considering alternative criteria to be optimized: the minimization of the overall transportation
cost (sum) (see Campbell, 1996; Cánovas et al., 2007; Ernst and Krishnamoorthy, 1999; García et al., 2012; Labbé et al.,
2005; Marín, 2005a,b; Marín et al., 2006), the minimization of the largest transportation cost or the coverage cost
(Bollapragada et al., 2006; Campbell et al., 2007; Kara and Tansel, 2000; Kara and Tansel, 2003; Kratica and Stanimirovic,
2006; Meyer et al., 2009; Tan and Kara, 2007; Wagner, 2008), etc.

Apart from the choice of the optimization criterion, another crucial aspect in the literature on hub location, and in general
in any location problem, is the existence or not of capacity constraints. One can recognize that although capacitated models
are more realistic, the difficulty to solve them also increases in orders of magnitude with respect to their uncapacitated coun-
terpart. In many cases new formulations are needed and a more specialized analysis is often required to solve even smaller
sizes than those previously addressed for the uncapacitated versions of the problems. For this reason, capacitated versions of
hub location problems have attracted the interest of locators in the last years, see (Aykin, 1994; Campbell, 1994; Contreras
et al., 2009; Correia et al., 2010a,b; Ebery et al., 2000; Boland et al., 2004; Ernst and Krishnamoorthy, 1999; Marín, 2005a).

https://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2015.05.012&domain=pdf
https://dx.doi.org/10.1016/j.trc.2015.05.012
https://dx.doi.org/10.1016/j.trc.2015.05.012
https://www.sciencedirect.com/science/journal/0968090X
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Along the same line, it is worth mentioning some other references that assume congestion at hubs, as congestion acts as a
limit on capacity, see (De Camargo et al., 2009; Elhedhli and Hu, 2004; Marianov and Serra, 2003).

An interesting version of hub location model is the Capacitated Hub Location Problem with Single Allocation (CSA-HLP),
see (Contreras et al., 2009; Correia et al., 2010a; Ernst and Krishnamoorthy, 1999). In this context, single allocation means
that incoming and outgoing flow of each site must be shipped via the same hub. In contrast to single allocation models,
where binary variables are required in the allocation phase, multiple allocation allows different delivery patterns which
in turns implies the use of continuous variables, simplifying the problems. The CSA-HLP model incorporates capacity con-
straints on the incoming flow at the hubs coming from origin sites or even simpler, on the number of non-hub nodes
assigned to each hub. The inclusion of capacity constraints makes these models challenging from a theoretical point of view.
Regarding its applicability we cite one example described in Ernst and Krishnamoorthy (1999) based on a postal delivery
application, where a set of n postal districts (corresponding to postcode districts represented by nodes) exchange daily mail.
The mail between all the pairs of nodes must be routed via one or at most two mail consolidation centers (hubs). In order to
meet time constraints, only a limited amount of mail could be sorted at each sorting center (mail is just sorted once, when it
arrives to the first hub from origin sites). Hence, there are capacity restrictions on the incoming mail that must be sorted. The
problem requires to choose the number and location of hubs, as well as to determine the distribution pattern of the mail.

The CSA-HLP has received less attention in the literature than its uncapacitated counterpart. Campbell (1994) presented
the first Integer Mathematical Programming formulation for the Capacitated Hub Location Problem. This formulation was
strengthened by Skorin-Kapov et al. (1996). Ernst and Krishnamoorthy (1999), proposed a new model involving
three-index continuous variables and developed a solution approach based on Simulated Annealing where the bounds
obtained were embedded in a branch-and-bound procedure devised for solving the problem optimally. Recently, Correia
et al. (2010a) have shown that this formulation may be incomplete and they propose an additional set of inequalities to
assure the validity of the model in all situations. A new formulation using only two-index variables was proposed by
Labbé et al. (2005), where a polyhedral analysis and new valid inequalities were addressed. Although this formulation
had only a quadratic number of variables, the number of constraints was exponential, and to solve it, the authors developed
a branch-and-cut algorithm based on their polyhedral analysis. Contreras et al. (2009) presented for the same problem a
Lagrangian relaxation enhanced with reduction tests that allowed the computation of tight upper and lower bounds for a
large set of instances.

In two recent papers, (Puerto et al., 2011, 2013), a new model of hub location, namely the Single Allocation Ordered
Median Hub Location problem (SA-OMHLP), has been introduced and analyzed. This problem can be seen as a powerful tool
from a modeling point of view since it allows a common framework to represent many of the previously considered criteria
in the literature of hub location. Moreover, this approach is a natural way to represent the differentiation of the roles played
by the different parties (origins, hubs and destinations) in logistics networks (Fonseca et al., 2010, Kalcsics et al., 2010a,b;
Marín et al., 2009). This model does not assume, in advance, any particular structure on the network (Contreras et al.,
2009, 2011). Instead of that this structure is derived from the choice of the parameters defining the objective function.
Apart from the above mentioned characteristics, ordered median objectives are also useful to obtain robust solutions in
hub problems by applying k-centrum, trimmed-mean or anti-trimmed-mean criteria. It is worth mentioning that although
it is called single allocation, its meaning slightly differs from the classical interpretation in hub location where each site is
allocated to just one hub and all the incoming and outgoing flow to-from this site is shipped via the same link (the one join-
ing this site and its allocated hub). In this model, single allocation means that all the outgoing flow is delivered through the
same hub, but the incoming flow can come from different hubs. Actually, this is a mixed model and basically the same sit-
uation described above, about postal deliveries, naturally fits in this framework assuming that letters from the same origin
should be sorted, with respect to their destinations, in the same place and from there they are delivered via their cheapest
routes. Observe that in this scheme it is also natural that incoming flow in a final destination comes from different hubs.

The SA-OMHLP distinguishes among segmented origin–destination deliveries giving different scaling factors to the ori-
gin–hub, hub–hub and hub–destination links. The cost of each origin–first hub link is scaled by a factor that depends on
the position of this cost in the ordered sequence of costs from each origin to its corresponding first hub (Boland et al.,
2006; Marín et al., 2009; Nickel and Puerto, 2005). Moreover, the overall interhub cost and hub-destination cost are multi-
plied by different economies of scale factors. The goal is to minimize the overall shipping cost under the above weighting
scheme. The reader may note that the first type of scaling factors mentioned above adds a ‘‘sorting’’ problem to the under-
lying hub location model, making its formulation and solution much more challenging. This model and two different formu-
lations were introduced in Puerto et al. (2013) while a specialized B&B&Cut algorithm was developed in Puerto et al. (2011)
and Ramos (2012). None of those formulations could handle capacities since the computation burden of the problems was
very high demanding. Thus, the SA-OMHLP with capacity constraints, i.e. Capacitated Single Allocation Ordered Median Hub
Location problem (CSA-OMHLP) is currently an open line of research.

In this paper, we analyze in depth the CSA-OMHLP trying to obtain a better knowledge and alternative ways to solve it.
Thus, the contributions of this paper are threefold. First, it combines for the first time three challenging elements in location
analysis: hub facilities, capacities and ordered median objectives, proposing a promising IP formulation which remarkably
reduces the number of decision variables. Second, we develop new theoretical results which provide additional knowledge
on the structure of the solutions set and allow to design an efficient cut and branch approach to solve the problem. Indeed,
we are giving a better polyhedral description of the considered problem (fourteen families of valid inequalities). In addition
to this strengthening, we also develop two new preprocessing phases which are shown to be very effective in solving the
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problem. Finally, despite the difficulty of considering simultaneously capacitated models, hubs and ordering, the techniques
proposed in this paper are not only a void theoretical development but also of practical importance: this is evidenced by the
improvement in more than 88% in the CPU time for solving the test problems in the paper.

The paper is organized as follows: in Section 2 we will provide, first, a MIP formulation for the capacitated version of the
problem extending the one in Puerto et al. (2011) and then another formulation in the spirit of Puerto et al. (2013) where the
number of variables has been considerably reduced with respect to the previous one. Section 3 strengthens the latter formu-
lations with variable fixing and several new families of valid inequalities. In Section 4, the effectiveness of the proposed
methodology is tested with an extensive computational experience comparing the performance of the two formulations
and the proposed strengthening. Finally, the paper ends with some conclusions.
2. Model and MIP formulations

The goal of this paper is to analyze the CSA-OMHLP. For this reason, we elaborate from the most promising formulations
of the non-capacitated version of that problem, namely the so called radius (covering) formulations, see (Puerto et al., 2011,
2013). In order to be self-contained and for the sake of readability, we include next a concise description of these formula-
tions in their application to the capacitated problem.

Let A ¼ f1; . . . ; ng be a set of n client sites, where each site is collecting or gathering some commodity that must be sent to
the remaining ones. It is assumed, without loss of generality, that the set of candidate sites for establishing hubs is also A. Let
wjm P 0 be the amount of commodity to be supplied from the j-th to the m-th site for all j;m 2 A, and let Wj ¼

P
m2Awjm be

the total amount of commodity to be sent from the j-th site. Let cjm P 0 denote the unit cost of sending commodity from site
j to site m (not necessarily satisfying the triangular inequality). It is assumed free self-service, i.e., cjj ¼ 0; 8j 2 A.

We assume that the number of hubs to be located is p 6 n and the flow pattern between each pair of sites (links connect-
ing pairs) traverses at least one and no more than two hubs from X. Moreover, considering bj as the capacity of a hub located
at site j with j 2 A, a solution for the problem is a set of sites X # A with jXj ¼ p and enough capacity to cover the flow coming
from the sites; plus a set of links connecting pairs (flow patterns) of sites j; m for all j;m 2 A.

As it was mentioned in Section 1, the main advantage of using hubs is to reduce costs by applying economies of scale to
consolidated flows in some part of the network. In this model the transportation cost is decoupled into the three differen-
tiated possible links: origin site-first hub, hub-to-hub, and hubs-final destination. These transportation costs are scaled in a
different way. The model weights origin site-first hub transportation costs by using parameters k ¼ ðk1; . . . ; knÞ, with
ki P 0 8i 2 A, depending on their ordered rank values. This is, let ĉjk be the cost of the overall flow sent from the origin site
j if it were delivered via the first hub k, i.e. ĉjk :¼ cjkWj; j; k 2 A. If ĉjk were ranked in the i-th position among all these costs,
then this term would be scaled by ki in the objective function. For the two remaining links there are two compensation fac-
tors: 0 < l < 1 for the deliveries between hubs, and 0 < d < 1, l < d, for the deliveries between hubs and final destination
sites. These parameters imply that, even in the case where the costs satisfy the triangle inequality, using a second hub could
result in a cheaper connection than going directly from the first hub to the final destination. Actually, it represents the appli-
cation of the economies of scale by the consolidation of flow in the hubs.

In the following we present a first valid formulation of the CSA-OMHLP, based on covering variables (the reader is referred
to Puerto et al. (2011) and Puerto et al. (2013) for further details). Sorting the different delivery costs values ðĉjkÞ for j; k 2 A,
in increasing order, we get the ordered cost sequence:
ĉð1Þ :¼ 0 < ĉð2Þ < � � � < ĉðGÞ :¼ max
16j;k6n

fĉjkg:
where G is the number of different elements of the above cost sequence. For convenience we consider ĉð0Þ :¼ 0.
For i 2 A and h ¼ 1; . . . ;G, we define the following set of covering variables,
�uih :¼
1; if the i� th smallest allocation cost is at least ĉðhÞ;
0; otherwise:

�
ð1Þ
Clearly, the i-th smallest allocation cost is equal to ĉðhÞ if and only if �uih ¼ 1 and �ui;hþ1 ¼ 0.
In addition, this formulation uses two more sets of variables:
xjk ¼
1; if the commodity sent from origin site j goes first to the hub k;

0; otherwise:

�
ð2Þ

sk‘m ¼ flow that goes through a first hub k and a second hub ‘ with destination m;
with j; k; ‘;m 2 A. Since we assume that any origin is allocated to itself if it is a hub, the above definition implies that site k is
opened as a hub if the corresponding variable xkk takes the value 1.

The formulation of the model is:
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ðF�uÞ min
X
i2A

XG

h¼2

kiðĉðhÞ � ĉðh�1ÞÞ�uih þ
X
k2A

X
‘2A

X
m2A

ðlck‘ þ dc‘mÞsk‘m ð3Þ

s:t:
X
k2A

xjk ¼ 1; 8j 2 A ð4Þ
X
j2A

xjk 6 nxkk; 8k 2 A ð5Þ
X
k2A

xkk ¼ p ð6Þ
X
‘2A

sk‘m ¼
X
j2A

wjmxjk; 8k;m 2 A ð7Þ

sk‘m 6
X
j2A

wjmð1� xmmÞ 8k; ‘;m 2 A; ‘ – m ð8Þ
X
‘2A

X
m2A

sk‘m 6 xkk

X
j2A

Wj; 8k 2 A ð9Þ
X
k2A

X
m2A

sk‘m 6 x‘‘
X
j2A

Wj; 8‘ 2 A ð10Þ
X
j2A

Wjxjk 6 bkxkk; 8k 2 A ð11Þ

X
i2A

�uih ¼
X
j2A

Xn

k¼1
ĉjkPĉðhÞ

xjk; 8h ¼ 1; . . . ;G ð12Þ

�uih P �ui�1;h; 8i 2 A n f1g; h ¼ 1; . . . ;G ð13Þ
�uih; xjk 2 f0;1g; sk‘m P 0; 8i; j; k; ‘;m 2 A; h ¼ 1; . . . ;G ð14Þ
The objective function (3) accounts for the weighted sum of the three components of the shipping cost, namely origin–
first hub, hub–hub and hub–destination. The origin–hub costs are accounted after assigning the lambda parameters, i.e.P

i2A

PG
h¼2ki � ðĉðhÞ � ĉðh�1ÞÞ � �uih. In addition, the second and third blocks of delivery costs, i.e. the hub-hub and

hub-destination cost, scaled with the l and d parameters respectively, can be stated as:
P

k2A

P
‘2A

P
m2Aðlck‘ þ dc‘mÞsk‘m.

Constraints (4) ensure that the flow from the origin site j is associated with a unique first hub. Constraints (5) ensure that
any origin only can be allocated to an open hub. Constraint (6) fixes the number of hubs to be located. Constraints (7) are
flow conservation constraints, such that the flow that enters any hub k with final destination m is the same as the flow that
leaves hub k with destination m. Constraints (8) ensure that if the final destination site is a hub, then the flow goes at most
through one additional hub. These constraints are redundant whenever the cost structure satisfies the triangular inequality,
however they are useful in reducing solution times (see Puerto et al., 2011). Constraints (9) and (10) establish again that the
intermediate nodes in any origin–destination path should be open hubs. Constraints (11) establish the capacity constraints
of the hubs. Observe that this family of constraints make redundant the family (5), but we have kept it because it reduces the
computational times. Constraints (12) link sorting and covering variables. They state that the number of allocations with a
cost at least ĉðhÞ must be equal to the number of sites that support shipping costs to the first hub greater than or equal to ĉðhÞ.
Finally, constraints (13) are a group of sorting conditions on the variables �uih.

The reader may note that this formulation is a natural extension for the capacitated version of the radius formulation
already considered for the uncapacitated ordered median hub location problem in Puerto et al. (2011, 2013). However,
although this formulation is enough to specify the CSA-OMHLP, we have found that for solving medium sized problems it
produces very large MIP models, which are difficult to solve with standard MIP solvers (CPLEX, XPRESS, Gurobi. . .).
Therefore, some alternatives should be investigated.

One way to improve the performance of the above formulation is to take advantage of some features of that model to
reduce the number of variables. In this case, one can succeed reducing the number of u variables. The logic of the above for-
mulation can be further strengthened for important particular cases of the discrete ordered median hub location problem. In
the following, we show a reformulation that is based on taking advantage of sequences of repetitions in the k-vector. (See
Marín et al., 2010; Puerto et al., 2013; Ramos, 2012 for similar reformulations applied to other location problems.)

One can realize that for k-vectors with sequences of repetitions – i.e. the center, k-centrum, trimmed means or median
among others, many variables used in formulation F�u are not necessary (since they are multiplied by zero in the objective
function), and some others can be glued together (since they have the same coefficient in the objective function).
Moreover, under the assumption of the free self-service, and that any origin is allocated to itself if it is a hub, we conclude
that the p smallest transportation costs from the origin to the first hubs are 0, i.e. the first p components of the k-vector are
multiplied by 0. Therefore, in order to simplify the problem one can disregard the p first components of the k-vector. Let
~k ¼ ð~k1; . . . ; ~kn�pÞ :¼ ðkpþ1; . . . ; knÞ.

In order to give a formulation for the CSA-OMHLP taking advantage of these facts, we need to introduce some additional
notation. Let I be the number of blocks of consecutive equal non-null elements in ~k and define the vectors:
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1. c ¼ ðc1; . . . ; cIÞ, being ci; i ¼ 1; . . . ; I the value of the elements in the i-th block of repeated elements in ~k.
2. a ¼ ða1; . . . ;aI;aIþ1Þ, being ai with i ¼ 1; . . . ; I, the number of zero entries between the ði� 1Þ-th and i-th blocks of positive

elements in ~k and aIþ1 the number of zeros, if any, after the I-th block of non-null elements in ~k. For notation purposes we
define a0 ¼ 0.

3. b ¼ ðb1; . . . ; bIÞ, being bi; i ¼ 1; . . . ; I the number of elements in the i-th block of non-null elements in ~k. For the sake of
compactness, let b0 ¼ bIþ1 ¼ 0.

Next, let denote ai ¼
Pi

j¼1aj, bi ¼
Pi

j¼1bj. Moreover, for all i ¼ 1; . . . ; I and h ¼ 1; . . . ;G, let us define the following set of
decision variables:
Fig. 1.
the fina
uih ¼
1; if the ðpþ ai þ bi�1 þ 1Þ-th assignment cost is at least ĉðhÞ;

0; otherwise:

(

v ih ¼ Number of assignments in the i� th block between the positions

pþ ai þ bi�1 þ 1 and pþ ai þ bi that are at least ĉðhÞ:
With the above notation the formulation of CSA-OMHLP is:
ðFuvÞ min
XI

i¼1

XG

h¼2

ciðĉðhÞ � ĉðh�1ÞÞv ih þ
X
k2A

X
‘2A

X
m2A

ðlck‘ þ dc‘mÞsk‘m ð15Þ

s:t: Constraints : ð4Þ—ð11Þ;
XI

i¼1

aiuih þ
XI

i¼1

v ih þ aIþ1 P
X
j2A

X
k 2 A

ĉjk P ĉðhÞ

xjk; 8h ¼ 2; . . . ;G ð16Þ

uih P ui�1;h; 8i ¼ 2; . . . ; I; h ¼ 1; . . . ;G ð17Þ
bi�1uih P v i�1;h; 8i ¼ 2; . . . ; I; h ¼ 1; . . . ;G ð18Þ
v ih P biuih; 8i ¼ 1; . . . ; I; h ¼ 1; . . . ;G ð19Þ
uih 2 f0;1g;v ih 2 Z \ ½0; bi�; 8i ¼ 1 . . . ; I; h ¼ 1; . . . ;G ð20Þ
xjk 2 f0;1g; sk‘m P 0; 8j; k; ‘;m 2 A: ð21Þ
The objective function (15) is a reformulation of (3) substituting the �u variables by the new u;v variables and the vector c,
taking advantage of the k vector properties. Constraints (16) ensure that the number of sites that support a shipping cost to
the first hub greater than or equal to ĉðhÞ is either equal to the number of allocations with a cost at least ĉðhÞ whenever v Ih > 0
or less than or equal to aIþ1 otherwise. Constraints (17) are sorting constraints on the variables u similar to constraints (13),
and constraints (18) and (19) provide upper and lower bounds on the variables v depending on the values of variables u.

The main difference between F�u and Fuv is that all �uih variables associated with blocks of zero k-values are removed, and
those associated with each block of non-null k values are replaced by 2� G variables. Therefore, overall we reduce the num-
ber of variables by ðn� 2IÞ � G.

Note that in Formulation F�u, the family of constraints that links covering variables (variables �u) and the allocation vari-
ables (variables x), i.e. (12), is given with equalities. This fact implies that the actual dimension of the feasible region in the
space of �u and x variables is smaller than the one that we were currently working on. This is exploited in the new formula-
tion. Indeed, we reduce the number of variables used in the sorting phase replacing �u by u and v. Therefore, the dimension of
the feasible region in the space of u;v ; x variables is smaller. In addition, the constraints that link sorting and design vari-
ables, namely (16), are given as inequalities. This new representation, although valid for the problem, induces some loss
2

1 5

3 2

1 5

3

4 4

6 6

Illustration of Example 2.1. Left figure represents the allocations of sites to their corresponding first hubs. Right figure represents the flow pattern to
l destinations from the first hubs: 4 (dashed lines) and 6 (grey lines).
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of information in that it does not allow us to take full control of the exact number of allocations at some specific cost. This
does not affect the resolution process but influences the derivation of valid inequalities.

Finally, for those cases where bi ¼ 1 we observe that v ih ¼ uih. This set of constraints whenever valid, was added to rein-
force the formulation.

Example 2.1. To illustrate how the Fuv versus F�u formulations work, we consider the following data. Let A ¼ f1; . . . ;6g be a
set of sites and assume that we are interested in locating p ¼ 2 hubs. Let the cost and flow matrices be as follows:
C ¼

0 14 15 16 15 9
5 0 7 2 19 16

16 5 0 7 1 19
12 1 10 0 13 1
1 9 9 15 0 2
8 10 16 8 4 0

0
BBBBBBBB@

1
CCCCCCCCA
; W ¼

0 15 2 8 11 2
19 0 1 16 20 7
3 9 0 3 11 16
7 2 5 0 14 5

15 4 20 4 0 1
12 4 7 11 18 0

0
BBBBBBBB@

1
CCCCCCCCA
:

Therefore, ĉð�Þ, the sorted vector of ĉ, is in our case
ĉð�Þ ¼ ½0;33;42;44;88;126;208;210;294;315;330;342;396;416;429;441;520;532;570;608;660;672;798;832;1008;1197�.

Hence, G¼26. Let k¼ð0;1;0;0;1;1Þ; l¼0:7; d¼0:9, and the capacity constraints vector b¼ð119;119;113;145;149;140Þ. The
optimal solution opens hubs 4 and 6. The allocation of origin sites to first hub is given by the following values of the variables
x (see Fig. 1):
x16 ¼ x24 ¼ x34 ¼ x44 ¼ x56 ¼ x66 ¼ 1:
Analogously, the allocation of first hubs to final destinations are given by the values of the non null variables s. Thus, the
flows considering as first hubs 4 and 6 are (see Fig. 1 for a graphical representation of the delivery paths):
s442 ¼ 11; s443 ¼ 6; s444 ¼ 19; s461 ¼ 29; s465 ¼ 45; s466 ¼ 28;

s642 ¼ 23; s644 ¼ 23; s661 ¼ 27; s663 ¼ 29; s665 ¼ 29; s666 ¼ 3:
Moreover, the covering variables �uih are given below. Due to their structure, we only report for each i the last one and first
zero occurrences since they characterize the remaining values.
i ¼ 1 # �u11 ¼ 1; �u12 ¼ 0 i ¼ 2 # �u21 ¼ 1; �u22 ¼ 0 i ¼ 3 # �u35 ¼ 1; �u36 ¼ 0
i ¼ 4 # �u46 ¼ 1; �u47 ¼ 0 i ¼ 5 # �u59 ¼ 1; �u5;10 ¼ 0 i ¼ 6 # �u6;12 ¼ 1; �u6;13 ¼ 0:
The first two assignments are done at a cost cð1Þ ¼ 0, corresponding to the two hubs (p ¼ 2). The next assignment has been
done at a cost cð5Þ ¼ 88, since �u35 ¼ 1 and �u36 ¼ 0, and so on. The rest of assignments costs are then cð6Þ ¼ 126; cð9Þ ¼ 294 and
cð12Þ ¼ 342.

Hence, the overall cost of this solution is
X
i2A

XG

h¼2

kiðĉðhÞ � ĉðh�1ÞÞ�uih þ
X
k2A

X
‘2A

X
m2A

ðlck‘ þ dc‘mÞsk‘m ¼ 636þ 1500:8 ¼ 2136:8:
In addition, to illustrate how the formulation Fuv is related with F�u, we also include the solution of the covering variables uih

and v ih:
Note that we have only one block of repeated non-null elements of the ~k-vector, so I ¼ 1. (See the right part of Fig. 2.) The

number of zero entries between two blocks is a1 ¼ 2, and the number of elements in the 1st block of non-null elements is
b1 ¼ 2. Furthermore, c1 ¼ 1 is the repeated value in the 1st block.
Fig. 2. Variables and lambda vector of Example 2.1.
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cð1Þ cð2Þ cð3Þ . . . cð9Þ cð10Þ cð11Þ cð12Þ cð13Þ cð14Þ cð15Þ cð16Þ cð17Þ . . . cð25Þ cð26Þ

u1;h ¼ ð1 1 1 . . . 1 0 0 0 0 0 0 0 0 . . . 0 0Þ
v1;h ¼ ð2 2 2 . . . 2 1 1 1 0 0 0 0 0 . . . 0 0Þ
The variable u1;h points out to the row pþ a1 þ 1 ¼ 5 of the original variable �ui;h. The variable v1;h accounts for the number
of assignments between the positions pþ a1 þ 1 ¼ 5 and pþ a1 þ b1 ¼ 6 of �ui;h that are at least ĉðhÞ. (See Fig. 2.)

From �ui;h, we know that the 5th assignment cost is ĉð9Þ and the 6th assignment cost is ĉð12Þ. For this reason v1;h is equal to 2
up to column 9, this is the number of assignment costs greater than or equal to ĉð9Þ, this number being equal to 1 from h ¼ 10
to h ¼ 12, and zero for the remaining columns.

Applying this formulation, the overall reduction in the number of variables is ðn� 2IÞ � G ¼ 104. The rest of variables x
and s remain the same, and again the overall cost of this solution is
XI

i¼1

XG

h¼2

ciðĉðhÞ � ĉðh�1ÞÞv ih þ
X
k2A

X
‘2A

X
m2A

ðlck‘ þ dc‘mÞsk‘m ¼ 636þ 1500:8 ¼ 2136:8:
3. Strengthening the formulation

3.1. Variable fixing

Next, we describe some preprocessing procedures that we have applied to further reduce the size of formulation Fuv . We
present a number of variable fixing possibilities for the set of variables u and v which are useful in the overall solution pro-
cess. The variable fixing procedures developed in this section are based on ideas used in Puerto et al. (2011, 2013) but taking
advantage of the capacity constraints. Indeed, we are adding the reinforced effective capacity constraints, as well as some
surrogated version of constraints (24) since in this aggregated form they give better running times. The preprocessing phase
developed in this paper also provides new upper and lower bounds on the variables v. The percentage of variable reduction
obtained by these procedures can be found in Table 1 (column named as ‘Fixed’).

Before describing these procedures for fixing variables, the following simple arguments allow us to fix some variables:

1. First, cjj ¼ 0 8j 2 A, i.e., ĉð1Þ ¼ 0. Moreover, every origin where a hub has been located will be allocated to itself as a first
hub.

2. Second, ĉjk – 0 if and only if j – k, i.e., any non-hub origin is allocated to a first hub at a cost of at least ĉð2Þ.

Therefore, since in this formulation the first p allocations are considered only implicitly, we can fix ui1 ¼ 1; v i1 ¼ bi as
well as ui2 ¼ 1, v i2 ¼ bi; 8i ¼ 1; . . . ; I.

3.1.1. Preprocessing Phase 1: Fixing variables to the upper bounds for the formulation with covering variables strengthen with
capacity constraints

Due to the definition of the variables in formulation Fuv , one can expect that uih ¼ 1 whenever i is large and h is small to
medium size because this would mean that the ðpþ ai þ bi�1 þ 1Þ-th sorted allocation cost would not have been done at cost
less than ĉðhÞ. The reader should observe that an analogous strategy applies to the variables v since their interpretation is
similar, but in this case the values of v ih would be fixed to bi. For the cases where it is not possible to fix the corresponding
variable v, it could still be possible to establish some lower bounds as we will see later.

Next, to fix variables uih and v ih for i ¼ 1; . . . ; I; h ¼ 1; . . . ;G, we deal with an auxiliary problem that maximizes the num-
ber of variables that may assume zero values, satisfying ĉjk 6 ĉðh�1Þ and the capacity constraints. For any h ¼ 1; . . . ;G and
j; k 2 A such that ĉjk 6 ĉðh�1Þ let
zh
jk ¼

1; if origin site j is assigned to hub k

0; otherwise:

�
ð22Þ
tational results for formulations F�u vs Fuv with preprocessing.

Formulation F�u Formulation Fuv Formulation Fuv + P1+P2

RGAP Nodes Time RGAP Nodes Time RGAP Nodes Ttotal Tprep Fixed(%) # Cuts

AN 13.30 234 483.9(1) 13.30 8139 88.4 9.90 7930 85.4 6.7 4.7 509
TRIMMEAN 17.70 8300 2523.8(18) 17.60 56,000 565.8 12.10 40,522 366.3 6.7 11.8 345
MEAN 15.00 6909 1725.3(6) 13.30 24,240 184.7 12.50 15,889 117.3 6.7 2.4 163
ER 21.60 1501 2945.8(20) 19.10 26,002 191.4 13.80 22,017 141.3 6.7 11.5 0
NTRUM 21.10 2534 2267.7(14) 16.70 28,714 312.5 11.20 20,257 200.6 6.7 3.2 359
KS 15.80 6132 1851.6(9) 15.60 61,612 1177.7 11.60 52,644 808.1(4) 6.8 19.2 297

L 17.40 4268 1966.3 15.90 34,118 420.1 11.80 26,543 286.5 6.7 8.8 279
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To avoid possible misunderstanding in the cases where variables zh
jk are not defined, i.e. when ĉjk > ĉðh�1Þ, we can assume that

zh
jk :¼ 0.

For a given h, we introduce the effective capacity of a hub k at a cost at most ĉðh�1Þ as,
bh�1
k :¼min bk;

X
s2A

ĉsk6ĉðh�1Þ

Ws

8><
>:

9>=
>;: ð23Þ
Indeed, the capacity of a hub k is always lower than or equal to bk. In addition, if we restrict ourselves to the nodes served at a
cost of at most ĉðh�1Þ, then the actual capacity to cover this set should be lower than

P
s2A:ĉsk6ĉðh�1Þ

Ws, and this gives us the

expression of bh�1
k .

The optimal value P1ðhÞ of the following problem fixes the maximal number of allocations that may be feasible at a cost of
at most ĉðh�1Þ.
P1ðhÞ :¼ max
X
j;k2A:

ĉjk6ĉðh�1Þ

zh
jk

s:t:
X

k2A:ĉjk6ĉðh�1Þ

zh
jk � 1; 8j 2 A;

X
j2A:ĉjk6ĉðh�1Þ

zh
jk 6 nyk; 8k 2 A ð24Þ

X
k2A

yk 6 p

X
j2A:ĉjk6ĉðh�1Þ

Wjzh
jk 6 bh�1

k yk; 8k 2 A

zh
jk; yk 2 f0;1g; 8j; k 2 A; 8h ¼ 1; . . . ;G:
Depending on the value P1ðhÞwe can fix some variables to their upper bounds. Let us denote by i1ðhÞ 2 f1; . . . ; Ig the index
such that
pþ ai1ðhÞ�1 þ bi1ðhÞ�1 < P1ðhÞ 6 pþ ai1ðhÞ þ bi1ðhÞ:
Then,
uih ¼ 1; v ih ¼ bi; i ¼ i1ðhÞ; . . . ; I; if P1ðhÞ 6 pþ ai1ðhÞ þ bi1ðhÞ�1

v i1ðhÞ;h P pþ ai1ðhÞ þ bi1ðhÞ � P1ðhÞ;
uih ¼ 1; v ih ¼ bi; i ¼ i1ðhÞ þ 1; . . . ; I;

( )
otherwise:

8>><
>>:
3.1.2. Preprocessing Phase 2: Fixing variables to their lower bounds
Following similar argument to the previous subsection, one can expect that many variables u and v in the top-right hand

corner of the matrices of variables u and v, respectively, will take value 0 in the optimal solution. Indeed, uih ¼ 0 means that
the ðpþ ai þ bi�1 þ 1Þ-th sorted allocation cost is less than ĉðhÞ which is very likely to be true if h is sufficiently large and i is
small. Note that an analogous strategy applies to the variables v since their interpretation is similar. For the cases where it is
not possible to fix the corresponding variable v it could be still possible to establish some upper bounds.

For any h ¼ 2; . . . ;G; j; k 2 A such that ĉjk P ĉðh�1Þ let define variables zh
jk as (22). To avoid possible misunderstanding in the

cases where variables zh
jk are not defined, i.e. when ĉjk < ĉðh�1Þ, we can assume that zh

jk :¼ 0. Using these variables, the formu-

lation of the problem that maximizes the number of non-fixed allocations at a cost at most ĉðh�1Þ is:
P2ðhÞ :¼max
X
j;k2A:

ĉjkPĉðh�1Þ

zh
jk

s:t:
X

k2A:ĉjkPĉðh�1Þ

zh
jk 6 1; 8j 2 A

X
j2A:ĉjkPĉðh�1Þ

zh
jk 6 nyk; 8j; k 2 A ð25Þ

X
k2A

yk 6 p;

zh
jk; yk 2 f0;1g; 8j; k 2 A; 8h ¼ 1; . . . ;G:
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Note that the value P2ðhÞ implies that there are no feasible solutions of the original problem with less than n� P2ðhÞ allo-
cations fixed at a cost at most ĉðhÞ.

Let 1 6 i2ðhÞ 6 I be the index such that
pþ ai2ðhÞ�1 þ bi2ðhÞ�1 < n� P2ðhÞ 6 pþ ai2ðhÞ þ bi2ðhÞ:
Thus, in any feasible solution of the problem we have that:
uih ¼ 0;v ih ¼ 0; i ¼ 1; . . . ; i2ðhÞ � 1; if n� P2ðhÞ 6 pþ ai2ðhÞ þ bi2ðhÞ�1

ui2ðhÞ;h ¼ 0; v i2ðhÞ;h 6 pþ ai2ðhÞ þ bi2ðhÞ � ðn� P2ðhÞÞ;
uih ¼ 0; v ih ¼ 0; i ¼ 1; . . . ; i2ðhÞ � 1;

( )
otherwise:

8>><
>>:
Note that, whenever n� P2ðhÞ ¼ p, there is nothing to fix and therefore no variables are set to zero in column h.

3.2. Valid inequalities

In order to strengthen formulation Fuv we have studied several families of valid inequalities. In fact, taking advantage of
previous experience on the non-capacitated version of the problem we have borrowed a first family of valid inequalities that
are very simple and that have proven to be effective in different ordered median problems with covering variables (Puerto
et al., 2011, 2013). This family is
uih P ui;hþ1; i ¼ 1; . . . ; I; h ¼ 1; . . . ;G� 1; ð26Þ
v ih P v i;hþ1; i ¼ 1; . . . ; I; h ¼ 1; . . . ;G� 1: ð27Þ
Since these families are straightforward consequence of the definition of variables u and v, they have been included in the
original formulation.

In the following, we describe several alternative families of valid inequalities: three sets of inequalities, (28), (29)–(32),
and (33)–(36), based on the combination of ordering and capacity requirements and two more sets, (37)–(39), that do not
use capacities.

3.2.1. First family of valid inequalities: valid inequalities based on capacity I
We can add several families of valid inequalities based on capacity issues to this model that help in solving the problem

by reducing the gap of the linear relaxation and the CPU time to explore the branch and bound search tree.
Observe that, the capacity of the set of hubs that may be used to assign origins in A at a cost at most ĉðh�1Þ, is given by
X

k2A

bh�1
k xkk
where bh�1
k is the effective capacity at a cost at most ĉðh�1Þ, defined by (23). Recall that, although the capacity of a hub k is

always lower than or equal to bk, when we restrict to the nodes served at a cost of at most ĉðh�1Þ, then the actual capacity

to cover this set should be lower than bh�1
k . Making use of the above observation, we can add the following family of con-

straints as valid inequalities
X
j2A

ĉjk6ĉðh�1Þ

Wjxjk 6 bh�1
k xkk 8h ¼ 2; . . . ;G; k 2 A ð28Þ
which enforces that all the flow sent from origin-hubs at a cost at most ĉðh�1Þ cannot exceed the effective capacity at that cost.

Observe that in the case where bh�1
k takes the value bk, (11) dominates (28), but in the case where bh�1

k ¼
P

s2A:ĉsk6ĉðh�1Þ
Ws, (28)

becomes
P

j2A:ĉjk6ĉðh�1Þ
Wjxjk 6

P
j2A:ĉjk6ĉðh�1Þ

Wjxkk. Observe that this last valid inequality is an alternative surrogation, with

capacity coefficients, of constraints xjk 6 xkk that although valid do not appear in the model because of its large cardinality.
This new form of aggregation has provided good results in the computational experiments.

3.2.2. Second family of valid inequalities: valid inequalities based on capacity II
This section introduces another family of valid inequalities based on capacity issues that help in solving the problem. In

order to present these new valid inequalities based on capacity requirements we introduce some new notation. Assume

without loss of generality that Wi 6Wiþ1 for i 2 A n fng and let Wj ¼
P j

r¼1Wr and Sk :¼ fi 2 A : i 6 kg for k 2 A be a given
set of origin sites.

In case that the effective capacity at a cost at most ĉðh�1Þ is not sufficient to cover the demand of Sk, i.e.
Pn

j¼1 bh�1
j �Wj

� �
xjj

is less than
Pk

s¼1Wsð1� xssÞ, then at most k� 1 origins of Sk can be allocated at a cost lower than or equal to ĉðh�1Þ. This argu-
ment can be applied for each h to the corresponding ĉðh�1Þ value. Moreover, we have chosen this particular structure of Sk

consisting of the k origins (nodes) with the k-smallest flows, because given a fixed amount of flow, the maximal cardinality
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set of origins such that the overall flow originated in this set is lower than or equal to this amount is provided by a set Sk for
some k 2 A. Therefore, since we are dealing with the worst cases, it allows us to fix some variables u and v through the fol-
lowing valid inequalities. For each h ¼ 2; . . . ;G we obtain the following:

� If ai�1 þ bi�1 < k 6 ai þ bi�1 þ 1, for some i 2 f1; . . . ; Ig, namely if the index of the last element, k, that defines Sk lies in the
i-th block of null elements in the ~k vector, then
Wkuih þ
X
j2A

bh�1
j �Wj

� �
xjj P

Xk

s¼1

Wsð1� xssÞ: ð29Þ

Observe that the above inequality amounts to a disjunctive condition: either the effective capacity at a cost at most ĉðh�1Þ

is enough to cover the demand of the k smallest flows from origin sites or the i-th sorted cost allocation must be assigned
at a cost at least cðhÞ.

� If ai þ bi�1 þ 1 < k 6 ai þ bi, and namely if the index of the last element, k, that defines Sk lies in the i-th block of non-null
elements, then
Wkv ih þ
X
j2A

bh�1
j �Wj

� �
xjj P

Xk

s¼1

Wsð1� xssÞ: ð30Þ

In this case, the inequality is similar to the previous one but written in terms of the variables v that allow to control the
capacity whenever k falls within a block of non-null elements in the ~k vector.
Remark 3.1. Recall that if k > P1ðhÞ � p, variables uih and v ih have been already fixed by the Preprocessing Phase 1, and for
the above inequality to be effective k 6 P1ðhÞ � p, or equivalently, i 6 i1ðhÞ.

Based on the same arguments we can add a larger family of valid inequalities built on arbitrary sets of origin sites. Let S be
a set of origin sites, and suppose that AS ¼

P
s2SWs satisfies Wk 6 AS < Wkþ1 ,

� If ai�1 þ bi�1 < k 6 ai þ bi�1 þ 1, for some i 2 f1; . . . ; Ig, and k 6 P1ðhÞ � p then
ASuih þ
X
j2A

bh�1
j �Wj

� �
xjj P

Xk

s¼1

Wsð1� xssÞ: ð31Þ

� If ai þ bi�1 þ 1 < k 6 ai þ bi, and k 6 P1ðhÞ � p then
ASv ih þ
X
j2A

bh�1
j �Wj

� �
xjj P

Xk

s¼1

Wsð1� xssÞ: ð32Þ

Now, assuming a more general case and for an improvement of the above inequalities (29) and (30), for a given
h 2 f2; . . . ;Gg, and k 6 P1ðhÞ � p, k 2 f1; . . . ;aIþ1 þ bIÞg, let
Ms :¼ min
jð–sÞ2A

ĉjs:
Ms is the minimum allocation cost to s as an open hub. In other words, no allocation to hub s is possible at a cost less than Ms,
except in case s were a hub itself. We shall call this value the empty radius of s.

Define sðh� 1; kÞ to be the index of the sorted sequence of elements Ws such that there are exactly k elements Ws with
s 6 sðh� 1; kÞ and Ms 6 ĉðh�1Þ, namely sðh� 1; kÞ, is the index such that
jfs : s 6 sðh� 1; kÞ; Ms 6 ĉðh�1Þgj ¼ k:
Then it holds that,

� If ai�1 þ bi�1 < k 6 ai þ bi�1 þ 1, for some i 2 f1; . . . ; Ig, and k 6 P1ðhÞ � p
Wsðh�1;kÞ �
Xsðh�1;kÞ

s¼1
Ms>ĉðh�1Þ

Ws

0
B@

1
CAuih þ

X
j2A

bh�1
j �Wj

� �
xjj P

Xsðh�1;kÞ

s¼1
Ms6ĉðh�1Þ

Wsð1� xssÞ �
Xsðh�1;kÞ

s¼1
Ms>ĉðh�1Þ

ðWsðh�1;kÞ �WsÞxss: ð33Þ

The above inequality is also a disjunctive condition that reinforces the family of valid inequalities (29). It states that if the
effective capacity at a cost at most ĉðh�1Þ is not enough to cover the flow sent from origin sites that are not hubs and that
can be allocated at some costs less than or equal to ĉðh�1Þ then some of the origin sites with allocation costs less than ĉðh�1Þ
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must be assigned at a cost at least ĉðhÞ. We observe that the use of u variables in the left-hand side of the inequality is due

to the fact that k falls within a block of null elements in the ~k vector. A similar inequality also holds when k falls within a
block of non-null elements as shown below.
� If ai þ bi�1 þ 1 < k 6 ai þ bi, and k 6 P1ðhÞ � p then
Wsðh�1;kÞ �
Xsðh�1;kÞ

s¼1
Ms>ĉðh�1Þ

Ws

0
B@

1
CAv ih þ

X
j2A

bh�1
j �Wj

� �
xjj P

Xsðh�1;kÞ

s¼1
Ms6ĉðh�1Þ

Wsð1� xssÞ �
Xsðh�1;kÞ

s¼1
Ms>ĉðh�1Þ

ðWsðh�1;kÞ �WsÞxss: ð34Þ

This inequality is similar to the previous one whenever the index k falls within a block of non-null elements in the ~k
vector.

Finally, as the index sðh� 1; kÞ should be greater than or equal to k, we can split the above equations, (33) and (34), into
sðh� 1; kÞ � k equivalent inequalities. This is, for any t ¼ k; . . . ; sðh� 1; kÞ, define ŝðh� 1; k; tÞ to be the index of the sorted
sequence of elements Ws such that
jfs; s 6 ŝðh� 1; k; tÞ; Ms 6 ĉðh�1Þgj þ t � ŝðh� 1; k; tÞ ¼ k:
Then it holds that,

� If ai�1 þ bi�1 < k 6 ai þ bi�1 þ 1, for some i 2 f1; . . . ; Ig, and k 6 P1ðhÞ � p
Wt �
Xt

s¼1
Ms>ĉðh�1Þ and s6ŝðh�1;k;tÞ

Ws

0
B@

1
CAuih þ

X
j2A

bh�1
j �Wj

� �
xjj P

Xt

s¼1
Ms6ĉðh�1Þ or s>ŝðh�1;k;tÞ

Wsð1� xssÞ �
Xt

s¼1
Ms>ĉðh�1Þ and s6ŝðh�1;k;tÞ

ðWt �WsÞxss:

ð35Þ

� If ai þ bi�1 þ 1 < k 6 ai þ bi and k 6 P1ðhÞ � p, then
Wt �
Xt

s¼1
Ms>ĉðh�1Þ ;s6ŝðh�1;k;tÞ

Ws

0
B@

1
CAv ih þ

X
j2A

bh�1
j �Wj

� �
xjj P

Xt

s¼1
Ms6ĉðh�1Þ or s>ŝðh�1;k;tÞ

Wsð1� xssÞ �
Xt

s¼1
Ms>ĉðh�1Þ ;s6ŝðh�1;k;tÞ

ðWt �WsÞxss: ð36Þ

Observe that if t ¼ sðh� 1; kÞ then ŝðh� 1; k; tÞ ¼ sðh� 1; kÞ. Thus, the families of valid inequalities (35) and (36) include as
particular instances the families (33) and (34).

3.2.3. Third family of valid inequalities: disjunctive implications
The third family of valid inequalities, directly borrowed from Puerto et al. (2013), state disjunctive implications on the

origin-first hub allocation costs. They ensure that either origin site j is allocated to a first hub at a cost of at least ĉðhÞ or there
is an open hub k such that ĉjk < ĉðhÞ. This argument can be formulated through the following family of valid inequalities:
X

k2A:ĉjkPĉðhÞ

xjk þ
X

k2A: ĉjk<ĉðhÞ

xkk P 1; 8j 2 A; h ¼ 1; . . . ;G: ð37Þ
3.2.4. Fourth family of valid inequalities
Using the definition of the variables u and v, we establish a lower and an upper bound of the number of feasible alloca-

tions at a cost ĉðh�1Þ. Observe that using the family of constraints (12) for the original formulation, the exact number of allo-
cations done at a cost ĉðh�1Þ is given by

P
i2Að�ui;h�1 � �ui;hÞ. However, since in formulation Fuv the number of variables has been

considerably reduced, some information is lost. In particular, we cannot keep under control with this new formulation the
exact number of allocations at a cost ĉðh�1Þ. Indeed, the counterpart to equalities (12) in formulation Fuv is the family of con-
straints (16). Therefore, we are only able to give a lower and upper bound on this number of allocations. These lower and
upper bounds are formulated, respectively, by the following two families of constraints:
X

j2A

X
k2A

ĉjk¼ĉðh�1Þ

xjk P
XI

i¼1

ðv i;h�1 � v ihÞ þ
XI

i¼2

aiðui�1;h�1 � uihÞ; 8 h ¼ 2; . . . ;G; ð38Þ

X
j2A

X
k2A

ĉjk¼ĉðh�1Þ

xjk 6
XI

i¼1

ðv i;h�1 � v i;hÞ þ
XI

i¼1

aiðui;h�1 � ui;hÞ þ ð1� uIhÞaIþ1 þ a1u1h þ
XI�1

i¼1

aiþ1ðuiþ1;h � uihÞ; 8 h ¼ 2; . . . ;G:

ð39Þ
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The first sum in the right hand side of both families gives the exact number of allocations at cost ĉðh�1Þ in the positions
corresponding to non-null blocks of the vector k. However, the second sum in the right hand side of constraints (38) provides
a lower bound of the number of allocations at cost ĉðh�1Þ in the positions corresponding to the null blocks. In the same way,
the 2nd to the 4th sums in (39) provide an upper bound on the number of these allocations.
4. Computational results

The formulations given to the CSA-OMHLP with the corresponding strengthening and preproccesing phases, described in
this paper, were implemented in the commercial solver XPRESS IVE 1.23.02.64 running on a Intel(R) Core(TM) i5-3450 CPU
@3.10 GHz 6 GB RAM.

The cut generation option of XPRESS was disabled in order to compare the relative performance of the formulations
cleanly.

For this purpose we use the AP data set publicly available at http://www.cmis.csiro.au/or/hubLocation (see Ernst and
Krishnamoorthy, 1996). As in previous papers on the field related to the uncapacitated version of this problem, we tested
the formulations on a testbed of five instances for each combination of costs matrices varying: (i) n in f15;20;25;28;30g,
(ii) three different values of p (p 2 f3;5;8g for n ¼ 15 and p 2 f3;8;10g for n 2 f20;25;28;30g) and (iii) l ¼ 0:7; d ¼ 0:9l
and six different k-vectors. These k-vectors are the well-known Median k ¼ ð1; . . . ;1Þ, Anti-ðk1 þ k2Þ-trimmed-mean
k ¼ ð1; . . .k1 ;1;0; . . . ;0;1; . . .k2 ;1Þ; ðk1 þ k2Þ-Trimmed-mean k ¼ ð0; . . .k1 ;0;1; . . . ;1;0; . . .k2 ;0Þ, with k1 ¼ k2 ¼ d0:2ne, Center
k ¼ ð0; . . . ;0;1Þ, and k-Centrum k ¼ ð0; . . . ;0;1; . . .k ;1Þ with k ¼ d0:2ne, as well as a f0;1g-blocks k-vector (three alternate
f0� 1g-blocks of lambda weights, i.e. k ¼ ð0; . . . ; 0;1; . . . ;1;0; . . . ;0;1; . . . ;1;0; . . . ;0;1; . . . ;1Þ). Therefore, for the each combi-
nation of n; p and k we have tested five instances. This is, a total number of 450 instances have been used to test the per-
formance of the proposed models.

The capacities were randomly generated in ½miniWi; ð1=2Þ
P

i2AWi�. This generation procedure does not ensure in all cases
feasible instances, as capacity constraints can be very tight for problems with a low number of hubs (n ¼ 3;5). Overall, in our
experiments we got, initially 10 infeasible instances out of 75 (13.3%). These instances were replaced by new feasible ones
(generated with the same capacity structure). Hence, the reader may observe that the generation procedure gives tight
capacity constraints.

First of all, and for the sake of readability, we present in Fig. 3 a summary of our computational results. A more detailed
report of those results is also included in Tables 1–3 and a full description of these tables can be seen in http://arxiv.org/abs/
1503.04468.
Fig. 3. Summary of computational results carried out in the paper.

https://www.cmis.csiro.au/or/hubLocation
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Table 2
Computational results for Formulation Fuv with Valid Inequalities (I).

k Fuv þ P1 þ P2 ¼ P12 P12 + (28)–(30) P12 + (28), (33), (34) P12 + (28), (35), (36)

RGAP Nodes time RGAP Nodes time RGAP Nodes time RGAP Nodes time

MEDIAN 9.90 7930 85.4 9.40 5867 73.9 9.40 5251 66.7 9.40 5450 66.8
ANTI-TRIMMEAN 12.10 40,522 366.3 11.90 29,007 279.3 11.90 29,298 291.8 11.90 34,543 355.4
TRIMMEAN 12.50 15,889 117.3 12.30 9706 84.1 12.30 9846 84.1 12.30 10,062 85.5
CENTER 13.8 22,017 141.3 13.8 22,542 152.7 13.80 24,424 167.9 13.80 22,594 164.6
K-CENTRUM 11.20 20,257 200.6 11.10 18,888 199.0 11.10 22,669 256.9 11.10 15,194 164.4
BLOCKS 11.60 52,644 808.1(4) 11.50 52,303 858.9(5) 11.50 46,687 757.2(6) 11.50 46,981 760.8(4)

TOTAL 11.80 26,543 286.5 11.70 23,052 274.7 11.70 23,029 270.8 11.70 22,470 266.2

Table 3
Computational results for Formulation Fuv with Valid Inequalities (II).

k P12 + (28), (35), (36) P12 + (28), (35)–(37) P12 + (28), (35)–(38) P12 + (28), (35)–(39)

RGAP Nodes time RGAP Nodes time RGAP Nodes time RGAP Nodes time

MEDIAN 9.40 5450 66.8 6.10 1263 41.9 6.10 1203 40.9 6.10 1231 43.2
ANTI-TRIMMEAN 11.90 34,543 355.4 10.90 19,869 229.1 10.90 18,915 223.1 10.90 19,935 222.2
TRIMMEAN 12.30 10,062 85.5 11.50 7364 75.0 11.50 6699 73.1 11.50 6754 73.3
CENTER 13.80 22,594 164.6 13.60 23,200 176.1 13.60 22,082 178.4 13.60 24,560 194.5
K-CENTRUM 11.10 15,194 164.4 9.70 5618 83.3 9.50 9294 147.6 9.60 3875 75.1
BLOCKS 11.50 46,981 760.8(4) 10.30 39,332 784.0(4) 10.30 41,019 720.7(3) 10.30 40,829 697.4(3)

TOTAL 11.70 22,470 266.2 10.40 16,108 231.6 10.30 16,536 230.7 10.30 16,197 217.6
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Fig. 3 shows average results for each one of the considered problem types (different k-vectors). The left chart refers to
average CPU times and the right chart to the number of explored nodes of the B&B tree. Both charts contain the same number
of blocks standing for the different types of k-vectors plus and additional block (Total Avg.) for the consolidated average of all
k-vectors. Each block compares the behavior of the different formulations (F�u; Fuv) and their strengthening (variable fixing
and valid inequalities). The heading explains the meaning of bars within each block: F�u and Fuv stand for the corresponding
formulations; Fuv þ P12 when the two preprocesses P1ðhÞ and P2ðhÞ are applied; and Fuv þ P12 + (VI) when the Valid
Inequalities are added as well, denoted with their corresponding references.

Analyzing this figure we observe the improvement obtained with Fuv and its strengthening as compared with F�u or even
Fuv alone. Actually, the overall reduction in running time with respect to the initial formulation is around 89%.

Next, focusing in the best model, namely Fuv þ P12 + (28), (35)–(39), we observe that the most time consuming problem is
the one with k-vector given by f0;1g-blocks with a significant difference with respect to the remaining k-vectors. The second
most time consuming problem corresponds with the Antitrimmean. Similar conclusions, regarding the number of nodes, are
obtained looking at the right chart of Fig. 3. It is worth mentioning that although the formulation F�u provides the worst com-
putational times, it is the one that reports the lowest number of nodes in the B&B tree. This fact is explained because F�u has a
larger number of variables than Fuv which results in more difficult LP relaxations in each node of the B&B tree.

In spite of that Fig. 3 shows the general overview of our computational results, we also include in the following a more
detailed analysis based on Tables 1–3 (a full version of the paper including all the tables with the computational results for
each value of n and p can be seen in http://arxiv.org/abs/1503.04468).

Table 1 reports the results of the formulations and different preprocessing phases developed in this paper for the
CSA-OMHLP. The first three columns correspond to some of the computational results obtained by solving the
CSA-OMHLP with F�u formulation. The next three columns correspond to Formulation Fuv , and the rest of the columns to
the latter formulation plus the two preprocessing procedures, i.e Fuv þ P1 þ P2. Columns RGAP, Nodes and Time stand for
the averages of: the gap in the root node, number of nodes in the B&B tree and the CPU time in seconds; the time was limited
to two hours of CPU. To obtain a general idea of the comparisons among these averaged values, for the results in the column
Time and for different formulations and/or valid inequalities applied, we have accounted the value 7200 s for those instances
that exceed the time limit. A superindex in their corresponding averaged time value states the number of instances exceed-
ing the CPU time limit; in the same way, the values used to computed the average of the column Nodes have been the num-
ber of nodes of the B&B tree when the CPU time limit was reached.

The column Fixed gives the percentage of variables that have been fixed after the Preprocessing Phases 1 and 2. Column
Cuts provides the number of the lower and upper bounds over the variables v added to the model, after running the corre-
sponding preprocessing phases. Finally, Tprep reports the CPU time in seconds of the corresponding preprocessing phases and
column T total reports the overall CPU time in seconds to solve the problem including the corresponding preprocessing phase.
The row TOTAL provides the averaged results among all the tested instances.

Table 1 shows, that 68 instances required more than two hours to be solved using Formulation F�u, however the remaining
two analyzed ways to solve this problem were able to solve all the instances within the CPU time limit, except in a few cases

https://arxiv.org/abs/1503.04468


Table 4
Summary of the improvements presented in this paper.

k Imp_F�u_Fuv (%) Imp_Fuv (%) Imp_TOTAL (%)

MEDIAN 81.73 51.13 91.07
ANTI-TRIMMEAN 77.58 60.73 91.20
TRIMMEAN 89.29 60.31 95.75
CENTER 93.50 26.18 95.20
K-CENTRUM 86.22 75.97 96.69
BLOCKS 36.40 40.78 62.34

TOTAL 77.45 52.52 88.71
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for the f0;1g-blocks problem types. Regarding the running times for the different types of problems, we can see that
Anti-TrimMean and Blocks have been the problems that need more time to be solved (for the new formulation Fuv ). In
any case, we observed that there is a considerable reduction of the running times from the original formulation to the
improved formulation, and after applying the preprocessing phases. From Table 1, one can remark that Formulation Fuv with
Preprocessing Phases 1 and 2 provides better results, with a reduction of around a 86% of the time with respect to
Formulation F�u (taking into account that the latter formulation was not able to solve all the studied instances before the time
limit was exceeded). Moreover, the reduction of the running times with respect to Formulation Fuv (without preprocessing
phases) is around 32%.

As for the comparison between RGAP’s, we observe that the average gap of the linear relaxation after preprocessing
reduces around 32% from the original formulation (Formulation F�u) to Formulation Fuv with Preprocessing Phases 1 and
2. In any case, it is also worth noting that the gap from the original formulation to the improved formulation (without
any preprocessing phase) is reduced around 9%, what implies that even though this improved formulation uses much less
number of variables, it provides a better RGAP.

Table 2 presents several improvements to Formulation Fuv with Preprocessing Phases 1 and 2. In particular, the second,
third and fourth blocks of columns summarize the results when the combination of valid inequalities (28)–(30); (28), (33),
(34) and (28), (35), (36) are added to this formulation, respectively. In general, we can see that the latter combination pro-
vides the best results. In particular, there is an improvement of 7% of the running times with respect to Formulation Fuv with
Preprocessing Phases 1 and 2. Moreover, with respect to the number of nodes the improvement is around 15%, but the RGAP
is similar for all the analyzed reinforcements.

Since the best behavior observed was obtained with reinforcement given by (28), (35), (36), in the rest of our tests we
have used this configuration to make further strengthening. Table 3 presents several improvements to the Formulation
Fuv with Preprocessing Phases 1 and 2 and valid inequalities (28), (35), (36). In particular, the second, third and fourth blocks
of columns report the results after adding to the latter configuration the family of valid inequalities (37), (37), (38) and (37)–
(39), respectively. This table shows that the best results are obtained when all valid inequalities, (37)–(39), are added to the
current configuration; with an improvement of 18% in the running time, 28% in the number of nodes and 12% in the RGAP.

The overall conclusion of our experiment is that in order to solve CSA-OMHLP the best combination of formulation and
strengthening is to use Fuv þ P12 + (28) + (35)–(39). This configuration allows to solve medium size instances within 10 min
of CPU time. In summary, we have obtained: (i) an average improvement of 77:45% of CPU time by using formulation Fuv

instead of Fu (see column Imp_F�u Fuv of Table 4); (ii) an average improvement of 52:52% of CPU time over the formulation
Fuv by using the preprocessing phases for fixing variables and the valid inequalities presented in this paper (see column
Imp Fuv of Table 4), and (iii) an overall improvement, on average, of 88:71% from the initial formulation F�u to
Fuv þ P12 + (28) + (35)–(39), see column Imp_TOTAL of Table 4.
5. Concluding remarks

This paper can be considered as an initial attempt to address the capacitated single-allocation ordered hub location prob-
lem. The formulations, strengthening and preprocessing phases developed in this paper provide a promising approach to
solve the above mentioned problem although so far only medium size problems are reasonably well-solved. Thus, this work
opens interesting possibilities to study-and-develop ad hoc solution procedures that allow us to consider larger size
instances of this problem. Moreover, it also points out the possibility of developing heuristic approaches that will give good
solutions in competitive running times (Kratica and Stanimirovic, 2006; Puerto et al., 2014). All in all, this paper shows the
usefulness of using covering formulations and their corresponding strengthening for solving capacitated versions of ordered
hub location problems.
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